Name:	SC5b-9 Complex
Catalog Number:	A127C
Sizes Available:	100 μg/vial
Concentration:	1.0 mg/mL (see Certificate of Analysis for exact conc.)
Form:	Liquid
Purity:	>90% by SDS-PAGE
Buffer:	10 mM sodium phosphate, 145 mM NaCl, pH 7.3
Extinction Coeff.	$A_{280 nm} = 1.03 at 1.0 mg/mL$
Molecular Weight:	~1,030,000 Da (~13 chains)
Preservative:	None, 0.22 µm filtered
Storage:	-70°C or below. Avoid freeze/thaw.
Source:	Normal human serum (shown by certified tests to be negative
	for HBsAg and for antibodies to HCV, HIV-1 and HIV-II).
Precautions:	Use normal precautions for handling human blood products.
Origin:	Manufactured in the USA.

General Description

Vitronectin (S Protein) binds to membrane attack complexes that fail to insert into membranes. The result is a soluble complex of S Protein and C5b-9 and this has been named SC5b-9 (Dodds, A.W. and Sim, R.B. (1997)). Activation of complement in the absence of bilipid layer membranes results in most of the activated C5 forming SC5b-9 complexes. This can occur with activating particles such as immune complexes, yeast and bacterial cell walls. The SC5b-9 complexes can have more than one C9 (usually three) and more than one S Protein (usually three) per complex. Thus, the typical molecular weight is ~1,030,000 Da.

One C5b-7 complex can bind up to three molecules of S Protein. If C8 or C8 and C9 have already bound to the C5b-7 complex three S Protein molecules will bind to these complexes as well. The C5b6 and C5b-7 complexes sometimes diffuse away from the target cell and enter the membrane of a nearby cell. This is called bystander lysis or "reactive lysis" and can be a significant source of pathology. Binding of S Protein blocks this non-specific lysis. Diffusion of these early complexes away from the activating surface may result in addition of C8 and C9 to the complex prior to S Protein binding. Once S Protein binds to these complexes it prevents their membranolytic functions, thus creating soluble complexes that are subsequently cleared from circulation.

Physical Characteristics & Structure

The molecular weight of SC5b-9 Complex has a maximum approximate molecular weight of 1,030,000 Da and it is composed of ~13 polypeptide chains. Variations in molecular weight may occur due to the fact that SC5b-9 complexes may have 1 to 3 C9 molecules and 1 to 3 S Protein molecules per complex.

Function

See General Description above.

Assays

SC5b-9 has no functional activity. Several commercial ELISA kits specific for SC5b-9 are available. These are sold by BD Biosciences, Technoclone Ltd, Quidel, and

HyCult Biotechnology. Most rely on capture of the SC5b-9 with antibodies specific for neo-antigens on the complex and secondary detection with antibodies to complement proteins of the C5b-9 complex.

Applications

See General Description above.

In vivo

The normal serum concentration of SC5b-9 is low. Normal baseline levels for properly stored plasma range from less than 100 ng/mL to 600 ng/mL SC5b-9 or less than 0.1% of maximal conversion. Elevated levels of circulating SC5b-9 complexes have been associated with bacterial infections and other diseases where complement activation is known to occur.

Regulation

SC5b-9 complexes form spontaneously and the process has no known regulators. S Protein does compete for newly formed C5b-9 with other lipid-binding molecules in plasma such as LDL and HDL. After formation SC5b-9 complexes are cleared from the circulation.

Deficiencies

Deficiencies of C5, C6, C7, C8, C9 or S Protein will prevent formation of complete SC5b-9 complexes.

Diseases

As stated above, deficiencies of C5, C6, C7, C8, C9 or S protein will prevent formation of complete SC5b-9 complexes. The inability to form MAC (C5b-9 complexes) is a serious problem due to the high susceptibility to bacterial infections. No known diseases are specifically associated with the inability to produce soluble SC5b-9 complexes.

Precautions/Toxicity/Hazards

This protein is purified from human plasma, therefore precautions appropriate for handling any blood-derived product must be used even though the source was shown by certified tests to be negative for HBsAg, HTLV-I/II, STS, and for antibodies to HCV, HIV-1 and HIV-II.

Hazard Code: B WGK Germany 3 MSDS available upon request.

References

Bauer, J., Podack, E.R. and Valet, G. (1979) Determination of the number of lytic sites in biconcave and spheroid erythrocyte ghosts after complement lysis. J. Immunol. 122:2032-2036.

Dodds, A.W. and Sim, R.B. editors (1997) Complement. A Practical Approach (ISBN 019963539) Oxford University Press, Oxford.

Law, S.K.A. and Reid, K.B.M. (1995) Complement 2nd Edition (ISBN 0199633568) Oxford University Press, Oxford.

Morgan, B.P. ed. (2000) Complement Methods and Protocols. (ISBN 0-89603-654-5) Humana Press, Inc., Totowa, New Jersey.

Müller-Eberhard, H.J. (1984) The membrane attack complex. Springer Semin. Immunopathology 7:93-141.

Podack, E.R. (1984) Molecular composition of the tubular structure of the membrane attack complex of complement. J. Biol. Chem. 259: 8641-8647.

Rommel, F.A. and Mayer, M.M. (1973) Studies of guinea pig complement component C9: reaction kinetics and evidence that lysis of EAC1-8 results from a single membrane lesion caused by one molecule of C9. J. Immunol. 110:637-647.

Ross, G.D. (1986) Immunobiology of the Complement System. (ISBN 0-12-5976402) Academic Press, Orlando.